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ABSTRACT:
The prediction of reverberant sound fields generated by a directional source is of great interest because practical

sound sources are not omnidirectional, especially at high frequencies. For an arbitrary directional source described

by cylindrical and spherical harmonics, this paper developed a modal expansion method for calculating the

reverberant sound field generated by such a source in both two-dimensional and three-dimensional rectangular enclo-

sures with finite impedance walls. The key is to express the modal source density using the cylindrical or spherical

harmonic expansion coefficients of the directional source. A method based on the fast Fourier transform is proposed

to enable the fast computation of the summation of enclosure modes when walls are lightly damped or rigid. This

makes it possible to obtain accurate reverberant sound fields even in a large room and/or at high frequencies with a

relatively low computational load. Numerical results with several typical directional sources are presented. The effi-

ciency and the accuracy of the proposed method are validated by the comparison to the results obtained using the

finite element method. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0020070

(Received 8 December 2022; revised 22 May 2023; accepted 20 June 2023; published online 12 July 2023)

[Editor: Ning Xiang] Pages: 203–216

I. INTRODUCTION

The directivity of sound sources has significant effects

in many audio applications. For example, active noise con-

trol systems consisting of highly directional sources can mit-

igate the localized noise without adversely affecting other

areas.1,2 Recent advancements in design and implementation

of higher-order directional loudspeakers bring more possi-

bilities and flexibilities than omnidirectional ones in sound

field reproduction.3–5 Better auralization performance can

be achieved after including the source directivity.6 The

sound field generated by a directional source in free space

has been investigated intensively. As most sound sources are

used in reverberant environments, such as rooms and automo-

bile cabins, incorporating the source directivity in simulating

reverberant sound fields is receiving increasing interest.7

Although irregularly shaped enclosures are more realistic in

practical applications, the rectangular enclosure remains the

most commonly simulated acoustic environment due to its

simplicity and its ability to facilitate the investigation of

reverberant sound field properties.8–10 The rectangular enclo-

sure also serves as a building block for solving problems

involving more complex structures. For instance, solutions of

the reverberant sound fields in rectangular enclosures are uti-

lized to calculate the sound field in coupled rectangular

enclosures,11 door slits on ground,12 baffled openings in

walls,13 rectangular-like enclosures with leaning walls,14 and

so on. The aim of this work is to develop a computationally

efficient wave-based method in the frequency domain for cal-

culating the reverberant sound field generated by an arbitrary

directional source in a rectangular enclosure.

There are generally two ways to represent a directional

source: collections of point monopole sources and multipoles.

Representation using a large collection of point monopole

sources is based on the fact that any sound field can be

approximated by a set of point sources summed together with

appropriate amplitudes and phases. By assuming an array of

point sources, the source strength (also known as the driving

function) for each source is obtained via fitting against a pre-

defined or measured directivity.15,16 The multipole-based

methods express the sound field radiated by a directional

source using the cylindrical4 and spherical8 harmonic repre-

sentations in two-dimensional (2D) and three-dimensional

(3D) models, respectively. The concept is that the cylindrical

or spherical harmonics form an orthogonal and complete

basis for any well-behaved functions defined on a circle and a

sphere, respectively, so that the directivity can be represented

using either basis. This usually allows for a sparse representa-

tion of the source directivity compared to point monopole

sources. In addition, the sources are also increasingly mea-

sured via cylindrical or spherical harmonics,17 making it pre-

vailing in wave-based simulations.18

There are many methods for simulating the reverberant

sound fields in rectangular enclosures.10,19,20 Among them

the image source method (ISM) is one of the most popular
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methods due to its simplicity. Early studies focus on model-

ing omnidirectional sources in an enclosure21 as well as the

fast computation algorithms.22 In 2012, the ISM was gener-

alized for modeling directional sources placed in a 2D rect-

angular enclosure,4 and it was further extended for the 3D

rectangular enclosure.8 The key idea is to mirror the cylin-

drical and spherical harmonic patterns of the directional

source so that the multiple reflections due to enclosure walls

can be modeled. This provides a convenient way to simulate

the reverberant sound fields generated by a directional

source and was used in various kinds of applications in sim-

ulating binaural room transfer functions,23 sound source

localizations,24,25 spatial active noise control,26,27 and sound

field reproductions.28,29

The ISM provides an exact solution to the wave equa-

tion for a rectangular enclosure with rigid walls, but it

assumes angle-independent wall reflection coefficients,

making it inherently inaccurate for the enclosure with finite

impedance walls, especially when the source or receiver is

close to the wall.21 Although the accuracy can be improved

by using angle-dependent wall reflection coefficients, it

makes the computation much more complicated as these

coefficients depend on multiple parameters and involve

numerical integrations over angles in the complex

plane.30,31 In addition, the required number of image sources

to obtain a satisfactory converged solution scales with the

reverberation time.4 This means that the computation

becomes very time-consuming for a lightly damped enclo-

sure that has a large reverberation time. Moreover, the com-

putational cost becomes heavier if there are many receivers

in the enclosure.32 Although the convergence is fast at small

reverberation time, the prediction accuracy would be deteri-

orated if the angle-independent wall reflection coefficients

are used.

An alternative to the ISM is the modal expansion

method (MEM), which expresses the reverberant sound field

as the superposition of a complete set of modal functions

(eigenfunctions). The MEM was first used to solve for the

reverberant sound field in a rectangular enclosure with rigid

or lightly damped walls33 and then extended to accommo-

date the finite impedance walls.9,34 A hybrid MEM was also

proposed to combine the free field Green’s function and a

modal expansion to improve the convergence speed.35

Although most MEMs are used in the frequency domain,

they can also be extended to simulate the transient

response.36 The major advantage of the MEM is that it pro-

vides exact solutions to the wave equation with appropriate

boundary conditions, so it is in principle more accurate than

the ISM when the enclosure has finite impedance walls. For

an arbitrary source placed in an enclosure, a key of using

MEMs is to obtain the modal source density of this source,

which is the inner product of the source density and the

modal function.36 However, the source density for a direc-

tional source described by cylindrical or spherical harmon-

ics is usually unknown. Another challenge of using MEMs

is that the required number of enclosure modes to obtain

converged results scales with the enclosure volume and the

frequency cubed. This would limit the applications of

MEMs to low frequency responses in small enclosures. This

paper proposes to extend the MEM to incorporate the source

directivity and develop a computationally efficient algo-

rithm to reduce the computational load.

This paper is organized as follows. The physical model

to be investigated and cylindrical and spherical harmonic

representations of directional sources are presented in Sec.

II. The modal expansion of reverberant sound fields in a

rectangular enclosure with finite impedance walls as well as

with lightly damped walls is summarized in Sec. III. A fast

computation method utilizing the fast Fourier transform

(FFT) is developed in Sec. III D, which makes it possible to

simulate the reverberant sound fields in a large enclosure

and/or at high frequencies with a relatively low computation

load. Section IV solves the modal source density for an arbi-

trary directional source using its cylindrical and spherical

harmonic expansion coefficients so that the reverberant

sound field generated by such a source can be calculated

using the MEM. Finally, simulation results with several typ-

ical directional sources are presented in Sec. V and com-

pared against those obtained using the finite element method

(FEM).

II. PROBLEM FORMULATION

A. Physical model

Figure 1 shows the physical model to be investigated in

this paper. Both 2D (Ref. 4) and 3D (Ref. 8) enclosures are

considered for their extensive applications. The 2D and 3D

(global) Cartesian coordinate systems Oxy and Oxyz are

established with their origin at one corner of the 2D and 3D

enclosures, respectively. The dimensions of the 2D and 3D

enclosures are S ¼ Lx � Ly and V ¼ Lx � Ly � Lz, respec-

tively, and the walls are denoted by @S and @V.

A directional sound source is placed in the enclosure

with its acoustic center at qc ¼ ðxc; ycÞ or rc ¼ ðxc; yc; zcÞ.
The sound source is assumed to be spatially confined, so it

is represented by a finite extent distributed source inscribed

within a circle of radius q0 and a sphere of radius r0 as

shown in Figs. 1(a) and 1(b), respectively. For the method

developed in this paper, it is more convenient to define a

primed (local) coordinate system O0x0y0 in the 2D enclosure

ðO0x0y0z0 in the 3D enclosure) with the positive x0 ðz0 in the

3D enclosure) axis being the direction of the mainlobe and

the origin O0 at the acoustic center of the source. The radia-

tion directions of the source are denoted by unit vectors

nd ¼ ðcos ud; sin udÞ and nd ¼ ðsin hd cos ud; sin hd sin ud;
cos hdÞ, in 2D and 3D enclosures, respectively. The angle ud

is the azimuthal angle in the polar coordinate system ðq;uÞ
in the 2D enclosure. The angles hd and ud correspond to the

zenithal and azimuthal angles in the spherical coordinate

system ðr; h;uÞ, respectively, in the 3D enclosure.

Throughout this work, a harmonic term exp ð�ixtÞ is

assumed, where the angular frequency x ¼ 2pf , f is the fre-

quency, i is the imaginary unit, and t is the time. The objec-

tive is to calculate the reverberant sound field generated by
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an arbitrary directional source in a 2D or 3D rectangular

enclosure.

B. Cylindrical harmonic representation
of a directional source in 2D space

The sound pressure at an exterior field point q0 gener-

ated by an arbitrary directional source in 2D space can be

represented by the cylindrical harmonics as4

pðq0Þ ¼ qairx
4

X1
m¼�1

AmðkÞHmðkq0Þeimu0 ; q0 > q0; (1)

where q0 and u0 are the polar and azimuthal coordinates of

the point q0. The normalization factor qairx=4 represents the

self-radiation resistance of a point monopole source with the

wavenumber k in 2D free space, where qair is the air density,

the wavenumber k ¼ x=cair þ ia, cair is the sound speed in

air, and a is the attenuation coefficient at the frequency f due

to atmospheric absorption.37 The radius of the circle just

enclosing the source is denoted by q0 as shown in Fig. 1(a).

In Eq. (1), Hmð�Þ is the Hankel function of the first kind, and

AmðkÞ are expansion coefficients that can be obtained by

analytical derivations and/or measured results.38 This direc-

tional source can be seen as the radiation from a finite extent

distributed source with a source density of q0ðq0sÞ, so that

q0ðq0sÞ ¼ 0 for q0s > q0. Note that the field (or observation)

point q0 is represented in the primed coordinate system.

In free space, the sound pressure generated by such a

distributed source can be obtained by39

pðq0Þ ¼ �iqairx
ð ð

q0s�q0

q0ðq0sÞg2Dðq0 � q0sÞd2q0s; (2)

where the 2D Green’s function is expressed as

g2Dðq0 � q0sÞ ¼
i

4
H0ðkjq0 � q0sjÞ: (3)

It is known that g2D can be represented as the superposition

of cylindrical waves by39,40

g2Dðq0 � q0sÞ ¼
i

4

X1
m¼�1

Jmðkq0<ÞHmðkq0>Þeimðu0�u0sÞ; (4)

where Jmð�Þ is the Bessel function, q0< ¼ minðq0; q0sÞ, and

q0> ¼ maxðq0; q0sÞ. The substitution of Eq. (4) into Eq. (2)

yields

pðq0Þ ¼ qairx
4

X1
m¼�1

ð ð
q0s�q0

q0ðq0sÞJmðkq0sÞe�imu0s d2q0s

" #

� Hmðkq0Þeimu0 : (5)

By comparing Eqs. (5) and (1), it can be found that the

cylindrical harmonic expansion coefficients AmðkÞ and the

source density q0ðq0sÞ are related by

AmðkÞ ¼
ð ð

q0s�q0

q0ðq0sÞJmðkq0sÞe�imu0s d2q0s: (6)

Equation (6) shows that an arbitrary directional source

described by Eq. (1) can be seen as the radiation from an

equivalent source with a source density of q0ðq0sÞ inside the

circle q0 � q0.

C. Spherical harmonic representation of a directional
source in 3D space

The sound pressure at an exterior field point r0 gener-

ated by a directional source in 3D space can be represented

by the spherical harmonics as8,41,42

pðr0Þ ¼ qairxk

4p

X1
‘¼0

X‘
m¼�‘

Am
‘ ðkÞh‘ðkr0ÞYm

‘ ðh0;u0Þ; (7)

where r0; h0, and u0 are, respectively, the radial, zenithal,

and azimuthal coordinates of the point r0, the normalization

factor qairxk=ð4pÞ represents the self-radiation resistance of

a point monopole source with the wavenumber k in 3D free

space, h‘ð�Þ is the spherical Hankel function of the first kind,

FIG. 1. (Color online) Sketch of a directional source in (a) 2D and (b) 3D rectangular enclosures. The directional source is represented by a finite extent dis-

tributed source inscribed within (a) a circle of radius q0 and (b) a sphere of radius r0.
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Ym
‘ ð�; �Þ is the spherical harmonics of degree l and order m,

and Am
‘ ðkÞ are expansion coefficients. Similar to the 2D

model, this directional source can be seen as the radiation

from a finite extent distributed source with a source density

of q0ðr0sÞ, so that q0ðr0sÞ ¼ 0 for r0s > r0. Note that the field

(or observation) point r0 is represented in the primed coordi-

nate system.

In free space, the sound pressure generated by such a

distributed source can be obtained by

pðr0Þ ¼ �iqairx
ð ð ð

r0s�r0

q0ðr0sÞg3Dðr0 � r0sÞd3r0s; (8)

where the 3D Green’s function is expressed as

g3Dðr0 � r0sÞ ¼
eikjr0�r0sj

4pjr0 � r0sj
: (9)

It is known that g3D can be represented as the superposition

of spherical waves by43

g3Dðr0 � r0sÞ ¼ ik
X1
‘¼0

j‘ðkr0<Þh‘ðkr0>Þ

�
X‘

m¼�‘
Ym
‘ ðh

0;u0ÞYm;�
‘ ðh

0
s;u

0
sÞ; (10)

where the superscript “*” represents the complex conjuga-

tion, j‘ð�Þ is the spherical Bessel function of the first kind,

r0< ¼ minðr0; r0sÞ, and r0> ¼ maxðr0; r0sÞ. The substitution of

Eq. (10) into Eq. (8) yields

pðr0Þ ¼ qairxk
X1
‘¼0

X‘
m¼�‘

ð ð ð
r0s�r0

q0ðr0sÞj‘ðkr0sÞ
"

� Ym;�
‘ ðh

0
s;u

0
sÞd3r0s

#
h‘ðkr0ÞYm

‘ ðh0;u0Þ: (11)

By comparing Eqs. (11) and (7), it is observed that the

spherical expansion coefficients Am
‘ ðkÞ and the source den-

sity q0ðr0sÞ are related by

Am
‘ ðkÞ ¼ 4p

ð ð ð
r0s�r0

qðr0sÞj‘ðkr0sÞY
m;�
‘ ðh

0
s;u

0
sÞd3r0s: (12)

Equation (12) shows that an arbitrary directional source

described by Eq. (7) can be seen as the radiation from an

equivalent source with a source density of q0ðr0sÞ inside the

sphere r0 � r0. The following text aims to develop the modal

expansion for calculating the reverberant sound field gener-

ated by a directional source described by Eq. (1) or (7).

III. MODAL EXPANSION OF NON-DIFFUSE
REVERBERANT SOUND FIELDS

The framework of the modal expansion of reverberant

sound fields in a rectangular enclosure is summarized first in

Sec. III A. Then the eigenvalues and eigenfunctions

involved in the modal expansion are presented for an enclo-

sure with finite impedance and lightly damped walls in Secs.

III B and III C, respectively. Finally, in Sec. III D, a compu-

tationally efficient method is proposed to enable the fast

computation of the summation of modes by using the FFT

when the walls are lightly damped. Without loss of general-

ity, the formulas are derived in the 3D model, and the exten-

sion of them to the 2D model is straightforward.

A. Framework of the formulation

For an arbitrary source with a source density of qðrÞ,
the sound pressure in a rectangular enclosure can be

obtained by using the modal expansion as9

pðrÞ ¼ iqairx
X1
nx¼0

X1
ny¼0

X1
nz¼0

QnwnðrÞ
Knðk2 � k2

nÞ
; (13)

where wnðrÞ are eigenfunctions satisfying appropriate

boundary conditions on walls. The modal number n denotes

the index set of nx, ny, and nz, and the modal wavenumber

vector consisting of the corresponding eigenvalues is

kn ¼ ðknx
; kny

; knz
Þ with k2

n ¼ k2
nx
þ k2

ny
þ k2

nz
. It is noted that

all physical quantities in Eq. (13) are expressed in the

unprimed coordinate system. The eigenfunctions are orthog-

onal in the sense thatð ð ð
V

wnðrÞwn0 ðrÞd3r ¼ Kndnn0 ; (14)

where dnn0 is the Kronecker delta function, which equals 1

when n ¼ n0 and 0 otherwise. Note that in Eq. (14), wnðrÞ
should be multiplied by wn0 ðrÞ instead of its complex conju-

gation.9,44 The normalization factor is then obtained as

Kn �
ð ð ð

V

w2
nðrÞd3r: (15)

The modal source density in Eq. (13) has the form of

Qn �
ð ð ð

V

qðrsÞwnðrsÞd3rs; (16)

which can be seen as the inner product of the source density

qðrsÞ and the modal function wnðrsÞ. Note that qðrsÞ is the

source density defined in the unprimed coordinate system,

which differs from q0ðr0sÞ defined in the primed coordinate

system. The difficulty of modeling a directional source in an

enclosure is that the source density is usually unknown so

that the modal source density is unable to be calculated

using Eq. (16).

B. Finite impedance walls

Suppose the walls of the enclosure have a finite specific

acoustic impedance of ZðrÞ, and define the normalized spe-

cific acoustic admittance as bðrÞ ¼ qaircair=ZðrÞ. This defini-

tion is chosen because it is convenient to represent a
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commonly occurring case when the wall is rigid, i.e., b¼ 0.

The boundary conditions for eigenfunctions then read9

n � $wnðrÞ ¼ ibðrÞkwnðrÞ; r 2 @V; (17)

where the vector n is the unit normal vector of @V, which

points outward from the enclosure walls. Note that Eq. (17)

differs by a factor of –1 from that used in some literature,

because this paper adopts the time-harmonic convention of

exp ð�ixtÞ instead of exp ðixtÞ. The reason for this prefer-

ence can be found in Ref. 45. It is worth noting that the nor-

malized specific acoustic admittance can vary with

frequency by utilizing a frequency-dependent specific

acoustic impedance Zðr;xÞ. In contrast, the ISM often

assumes that the wall admittance is proportional to cosine of

the incident angle, leading to an angle-independent reflec-

tion coefficient.21 Therefore, when dealing with enclosures

that have walls with finite impedance, the MEM developed

in this work offers higher accuracy compared to the ISM.

For simplicity, the normalized specific acoustic admit-

tance is assumed to be uniform on each wall and frequency-

independent in this work, and bn;0 and bn;Ln
denote the value

on the wall n¼ 0 and n ¼ Ln, respectively, where n ¼ x; y; z.

For finite impedance walls, the eigenfunctions can be

chosen as9

wnðrÞ¼ cosðknx
xþ cnx

Þcosðkny
yþ cny

Þcosðknz
zþ cnz

Þ; (18)

where the modal phases cn ¼ ðcnx
; cny

; cnz
Þ are determined

by the equation

knn tan cnn
¼ ikbn;0; (19)

and the eigenvalues knn are obtained by solving the transcen-

dental equation,9

ðk2bn;0bn;Ln
þ k2

nn
Þ tanðknnLnÞ ¼ �ikknnðbn;0 þ bn;Ln

Þ; (20)

which are complex numbers in general. The normalization

factor given by Eq. (15) is then obtained by directly evaluat-

ing the integral as

Kn ¼
V

8

Y
n¼x;y;z

1þ sincðknnLnÞcos ðknnLnþ 2cnn
Þ

� �
; (21)

where the volume V ¼ LxLyLz and sincx � ðsin xÞ=x is the

sinc function.

C. Lightly damped or rigid walls

For lightly damped or rigid walls, the formulation can

be further simplified. The boundary conditions for rigid

walls are obtained by setting b¼ 0 in Eq. (17). The eigen-

values are known to be

knn ¼
nnp
Ln

; (22)

and the corresponding eigenfunctions are

wnðrÞ ¼ cosðknx
xÞ cosðkny

yÞ cosðknz
zÞ; (23)

which can be seen as a reduced form of Eq. (18) by setting

cnn
¼ 0 into it. The normalization factor Kn given by Eq.

(15) reduces to S=en and V=en for 2D and 3D models,

respectively, where en ¼ enx
eny

enz
and the Neumann factor

enn ¼ 1 when nn ¼ 0; enn ¼ 2 when nn 6¼ 0.

For lightly damped walls with 0 < jbj � 1, the eigen-

values and eigenfunctions remain the same as given by Eqs.

(22) and (23). However, the wavenumber k ¼ x=c0 þ ia is

modified as k ¼ x=c0 þ iðaþ Dn=2Þ to include the damping

effects, where Dn is the damping term of each mode36,46

Dn �
1

Kn

ð ð
@V

bðrÞw2
nðrÞd2r: (24)

Based on the assumption that bðrÞ is uniform on each wall,

it is obtained that

Dn ¼
1

V
enx

Sxðbx;0 þ bx;Lx
Þ þ eny

Syðby;0 þ by;Ly
Þ

h
þenz

Szðbz;0 þ bz;Lz
Þ
i
; (25)

where Sx ¼ LyLz, Sy ¼ LxLz, and Sz ¼ LxLy are the areas of

the wall perpendicular to x, y, and z axes, respectively.

D. Fast computation using FFT

In numerical computations, the leading terms of the

modal expansion given by Eq. (13) need to be truncated to

obtain a converged result. Let us assume that the truncation

terms are Nx=2, Ny=2, and Nz=2 for nx, ny, and nz, respec-

tively. Meanwhile, by using the relation cosðknnnÞ
¼ ðeiknn

n þ e
�iknn

nÞ=2, Eq. (13) can be rewritten as

pðrÞ 	
XNx=2�1

nx¼�Nx=2

XNy=2�1

ny¼�Ny=2

XNz=2�1

nz¼�Nz=2

~pðknÞeikn�r (26)

for lightly damped enclosures, where kn ¼ ðnxDkx; nyDky;
nzDkzÞ, Dkn ¼ p=Ln, n ¼ x; y; z, and ~pðknÞ is defined as

~pðknÞ �
iqairxQn

Vðk2 � k2
nÞ
: (27)

If the sound pressure at the grid points rm ¼ ðmxDx;
myDy;mzDzÞ are evaluated, Eq. (26) can be straightfor-

wardly transformed into the form of 3D inverse discrete

Fourier transform with respect to ~pðknÞ, where Dn � 2Ln=
Nn, mn ¼ �Nn=2;�Nn=2þ 1;…;Nn=2� 1, and n ¼ x; y; z.

Therefore, it can be efficiently computed utilizing the FFT.

The reader is referred to Sec. 1.8.2 of Ref. 41 for more

details. The direct calculation of Eq. (26) requires the order

of N2
x N2

y N2
z multiplications and additions to obtain the rever-

berant sound field. However, the complexity of the compu-

tation with FFT reduces to only NxNyNzðlog NxÞðlog NyÞ
ðlog NzÞ without loss of accuracy. It is then much more
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efficient, especially at high frequencies and/or in large

enclosures.

It is noted that the computation of Eq. (26) using FFT is

valid only for lightly damped walls when kn are real valued

as given by Eq. (22). Nevertheless, the computation using

FFT still significantly reduces the computation load unless

walls have finite impedance in all directions. For example,

when the enclosure walls are nonrigid only in the z direc-

tion,9,10,13 the computation efficiency can still be improved

by using the FFT in both x and y directions. Furthermore,

the fast computation facilitated by the proposed FFT method

in this work also holds great potential for simulating various

other acoustic applications, where modal summations for

rigid walls are required. These applications include simulat-

ing the sound field in coupled rectangular enclosures,11 door

slits on ground,12 baffled openings in walls,13 rectangular-

like enclosures with leaning walls,14 and so on.

IV. MODAL SOURCE DENSITY FOR DIRECTIONAL
SOURCES

It can be found in Sec. III that the reverberant sound

field in an enclosure can be obtained using the modal expan-

sion given by Eq. (13) once the modal source density given

by Eq. (16) is known. However, the source density qðrsÞ is

generally unknown for a given directional source described

by Eqs. (1) and (7). It will be shown in Secs. IV A and IV B

that the modal source density can be obtained in terms of

the cylindrical and spherical harmonic expansion coeffi-

cients in an indirect way for both 2D and 3D models.

A. 2D directional sources

To obtain the modal source density for a 2D directional

source, an auxiliary integral is introduced as

IðknÞ ¼
ð ð

S

qðqsÞe�ikn�qs d2qs: (28)

It can be shown that the modal source density given by Eq.

(16) is

Qn ¼
1

4

X
6

e�iðcnxþcny ÞIð6knx
;6kny

Þ; (29)

where the symbol
P

6 denotes the summation of four possible

combinations of positive and negative signs. Consequently,

once the integral given by Eq. (28) is determined, the modal

source density is obtained according to Eq. (29). Our approach

is to solve the integral by using the cylindrical harmonic

expansion coefficients represented by Eq. (6).

It is noted that the source density qðqsÞ in Eq. (28) is

given in the unprimed coordinate system Oxy, the origin of

which is coincident with a corner of the enclosure. In most

cases, the source density is more conveniently represented

in a primed coordinate system O0x0y0 with the origin at the

acoustic center of the source and the positive x0 axis in

the direction of nd ¼ ðcos ud; sin udÞ, which is the center of

the mainlobe of the source. The primed axes x0y0 can be seen

as rotating the unprimed ones xy through an angle ud fol-

lowed by a translation of qc. The coordinates of the source

point in the primed system q0s and the coordinates in the

unprimed one qs are then related by

q0s ¼ Rðqs � qcÞ; (30)

where the rotation matrix is

R ¼
cos ud sin ud

�sin ud cos ud

" #
: (31)

By changing the integration region in Eq. (28) from S to

q0s � q0, it is obtained that

IðknÞ ¼
ð ð

q0s�q0

q0ðq0sÞe�ikn�qs d2q0s; (32)

where the relation d2q0s ¼ d2qs has been used because the

determinant of the rotation matrix is unit. Note that the

source point qs in the exponential function is still expressed

in the unprimed coordinate system. Because R is orthonor-

mal, R�1 ¼ RT, where R�1 is the inverse matrix of R, and

the superscript “T” denotes the transpose. The inverse trans-

formation from q0s to qs is obtained by qs ¼ R�1q0s þ qc

¼ RTq0s þ qc. The phase term in Eq. (32), i.e., kn � qs, can

be written as kT
n qs when kn and qs are represented as column

vectors. Accordingly, kT
nqs ¼ kT

n ðRTq0s þ qcÞ ¼ ðRknÞTq0s
þkT

n qc, which can also be written as ðRknÞ � q0s þ kn � qc

using the inner product notation. Then

IðknÞ ¼ e�ikn�qc

ð ð
q0s�q0

q0ðq0sÞe�ik0n�q0s d2q0s; (33)

where a primed modal wavenumber vector is defined as

k0n ¼ Rkn. It is clear that k0n � jk0nj ¼ jknj ¼ kn.

It is known that the cylindrical expansion holds that

e�ik0n�q0s ¼
X1

m¼�1
i�mJmðknq

0
sÞe

imðuk0n
�u0sÞ; (34)

where ðkn;uk0n
Þ are the polar coordinates of k0n such that

uk0n
¼ tan�1ðkny

0 =knx
0 Þ. Equation (34) represents the cylindri-

cal expansion of a plane wave arriving from the direction

�k0n when k0n are real valued. The substitution of Eq. (34)

into Eq. (33) yields

IðknÞ ¼ e�ikn�qc

X1
m¼�1

i�me
imuk0n

�
ð ð

q0s�q0

q0ðq0sÞJmðknq
0
sÞe�imu0s d2q0s: (35)

By comparing Eqs. (35) and (6), it can be found that

IðknÞ ¼ e�ikn�qc

X1
m¼�1

i�mAmðknÞeimuk0n : (36)

208 J. Acoust. Soc. Am. 154 (1), July 2023 Zhong et al.

https://doi.org/10.1121/10.0020070

 12 July 2023 16:51:10

https://doi.org/10.1121/10.0020070


Equation (36) is one of main results of this paper. Consider

an arbitrary directional source, the sound field generated by

which can be represented using the cylindrical harmonics as

shown by Eq. (1). The radiation from such as a source can

be seen as that from an equivalent distributed source with a

source density of q0ðq0sÞ spatially confined in a circle with a

radius of q0. Once the expansion coefficients AmðkÞ are

determined by analytical and/or experimental methods, the

auxiliary integral IðknÞ can be obtained using Eq. (36),

where the modal eigenvalues kn are obtained using Eq. (20)

or (22) and the rotated modal eigenvalues k0n ¼ Rkn with

the rotation matrix given by Eq. (31). Then the modal source

density for this directional source is obtained by Eq. (29),

where the phase term (if needed) cnn
is obtained using Eq.

(19). Finally, the reverberant sound field in an enclosure is

calculated using Eq. (13) with the eigenfunctions given by

Eq. (18) or (23). In conclusion, the modal source density Qn

is indirectly obtained using the cylindrical harmonic expan-

sion coefficients AmðkÞ.
It is noted that the integral in Eq. (33) represents a 2D

spatial Fourier transform of the primed source density

q0ðq0sÞ, which reads

~q0ðk0nÞ �
ð ð

q0s�q0

q0ðq0sÞe�ik0n�q0s d2q0s: (37)

This observation allows for a faster computation of the aux-

iliary integral than that given by Eq. (36), i.e.,

IðknÞ ¼ e�ikn�qc ~q0ðk0nÞ, when ~q0ðk0nÞ is known for a direc-

tional source.

B. 3D directional sources

Similar to Eq. (28), an auxiliary integral is defined as

IðknÞ ¼
ð ð ð

V

qðrsÞe�ikn�rs d3rs: (38)

It can be shown that the modal source density given by Eq.

(16) is

Qn¼
1

8

X
6

e�iðcnxþcnyþcnz ÞIð6knx
;6kny

;6knz
;6cnx

;6cny
;6cnz

Þ;

(39)

where the symbol
P

6 denotes the summation of eight pos-

sible combinations of positive and negative signs.

The primed axes x0y0z0 in Fig. 1(b) can be seen as rotat-

ing the unprimed axes xyz through an angle pair ðhd;udÞ fol-

lowed by a translation of rc. The coordinates of a point in

the primed system r0 ¼ ðx0; y0; z0Þ and the coordinates in the

unprimed one r ¼ ðx; y; zÞ are then related by

r0 ¼ Rðr� rcÞ; (40)

where the rotation matrix is obtained by two elementary

rotations Ry and Rz as

R ¼ Ryð�hdÞRzð�udÞ

¼
cos hd 0 �sin hd

0 1 0

sin hd 0 cos hd

2
4

3
5 cos ud sin ud 0

�sin ud cos ud 0

0 0 1

2
4

3
5:

(41)

By using the relation of Eq. (40), it is obtained that

kn � rs ¼ kn � ðR�1r0s þ rcÞ ¼ ðRknÞ � r0s þ kn � rc. By defin-

ing the primed wavenumber vector as the rotation of the

unprimed one, i.e., k0n ¼ Rkn, the auxiliary integral can be

rewritten as

IðknÞ ¼ e�ikn�rc

ð ð ð
r0s�r0

q0ðr0sÞe�ik0n�r0s d3r0s: (42)

It is known that the spherical harmonic expansion holds

that18

e�ik0n�r0s ¼ 4p
X1
‘¼0

i�‘j‘ðknr0sÞ
X‘

m¼�‘
Ym
‘ ðhk0n ;uk0n

ÞYm;�
‘ ðh

0
s;u
0
sÞ;

(43)

where ðkn; hk0n ;uk0n
Þ are the spherical coordinates of k0n.

Equation (43) represents the spherical harmonic expansion

of a plane wave arriving from the direction �k0n when k0n are

real valued. The substitution of Eq. (43) into Eq. (42) yields

IðknÞ ¼ 4pe�ikn�rc

X1
‘¼0

X‘
m¼�‘

i�‘Ym
‘ ðhk0n ;uk0n

Þ

�
ð ð ð

r0s�r0

q0ðr0sÞj‘ðknr0sÞY
m;�
‘ ðh

0
s;u
0
sÞd3r0s: (44)

By comparing Eqs. (44) and (12), it is observed that

IðknÞ ¼ e�ikn�rc

X1
‘¼0

X‘
m¼�‘

i�‘Am
‘ ðknÞYm

‘ ðhk0n ;uk0n
Þ: (45)

Equation (45) is one of main results of this paper and is the

3D version of Eq. (36). Consider an arbitrary directional

source, the sound field generated by which can be repre-

sented using the spherical harmonics as shown by Eq. (7).

The radiation from such a source can be seen as that from an

equivalent distributed source with a source density of q0ðr0sÞ
spatially confined in a sphere with a radius of r0. The calcu-

lation process of the modal source density is similar to the

2D model as described below Eq. (36).

It is noted that the integral in Eq. (42) represents a 3D

spatial Fourier transform of the primed source density

q0ðr0sÞ, which reads

~q0ðk0nÞ �
ð ð ð

r0s�r0

q0ðr0sÞe�ik0n�r0s d3r0s: (46)

This observation allows for a faster computation of the aux-

iliary integral than that given by Eq. (45), i.e., IðknÞ
¼ e�ikn�rc ~q0ðk0nÞ, when ~q0ðk0nÞ is known for a directional source.
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V. SIMULATION RESULTS

In the following simulations, the dimensions of the 2D

and 3D enclosures are Lx � Ly ¼ 1:414� 1:156 m2 and

Lx � Ly � Lz ¼ 1:414� 1:156� 1:5 m3, respectively. The

normalized acoustic specific admittance of the finite imped-

ance wall considered in the simulations is assumed to be

b ¼ 0:5, which corresponds to an absorption coefficient of

0.89.9 In all cases, three configurations of the enclosure are

considered: (i) all walls are rigid, i.e., b¼ 0; (ii) the wall on

the plane x¼ Lx is absorptive with a normalized acoustic

specific admittance of b ¼ 0:5 while other walls are rigid;

(iii) the wall on the plane y¼ 0 is absorptive with b¼ 0

while other walls are rigid. The eigenvalues determined by

Eq. (20) are numerically evaluated using the built-in func-

tion “FindRoot” in Wolfram Mathematica 13.0, although

there are more efficient ways.9,44 The total surface/volume

velocity of the source is set as Q0 ¼ 2� 10�5m2=s and

Q0 ¼ 2� 10�5m3=s in 2D and 3D models, respectively.

The sound pressure level (SPL) is presented in all following

figures with a reference pressure of 2� 10�5Pa. All calcula-

tions with FEM were performed using the commercial soft-

ware COMSOL Multiphysics 6.0. To ensure converged

results in the FEM, the maximal element size is set to be

one-tenth of the wavelength, and regular triangular/tetrahedral

meshes are used.

The reverberant sound fields generated by a directional

source in 2D and 3D enclosures are presented in Secs. V A

and V B, respectively. In both sections, the reverberant sound

fields at a low frequency are presented first. Then the fields at

an extremely high frequency (40 kHz) are presented to inves-

tigate the wave propagation of a highly directional source in

an enclosure, as well as to show the computational efficiency

of the proposed method. The choice of the frequency at

40 kHz results from the application of a highly directional

source, i.e., the parametric array loudspeaker (PAL), where

the directional audio beam is generated by the nonlinear inter-

actions of intensive ultrasound around 40 kHz.2 The accurate

ultrasound field around 40 kHz is required at first to obtain

the audio sound field generated by the PAL. Although the

reverberant sound field at such a high frequency is able to be

approximately predicted using various kinds of geometric

acoustics models,20 the phase information is neglected or

inaccurate so that they cannot be used for the calculations

involved in the PAL. The attenuation coefficient due to atmo-

spheric absorption is set as a ¼ 0:15Np=m at 40 kHz, which

is evaluated according to ISO 9613 with a relative humidity

of 70% and temperature 20 
C.37

A. Directional sources in a 2D enclosure

1. Point monopole source array

Supposing an array consisting of Ns point monopole

sources with the ith source located at q0s;i ¼ ðq0s;i;u0s;iÞ
described under the primed coordinates system, the source

density can be described as q0ðq0sÞ ¼
PNs

i¼1 Qs;idðq0s � q0s;iÞ,
where dð�Þ is the Dirac delta function and Qs;i is the source

strength of the ith source. The cylindrical harmonic expansion

coefficients can be obtained by using Eqs. (1) and (4) as

AmðkÞ ¼
XNs

i¼1

Qs;iJmðkq0s;iÞe�imu0s;i : (47)

The 2D spatial Fourier transform of the source density is

~q0ðk0nÞ ¼
XNs

i¼1

Qs;ie
�ik0n�q0s;i : (48)

In this subsection, a simple directional source that gen-

erates a dipole outgoing sound field is considered first. The

dipole is approximated by two point monopole sources

located at ðLx=2� 0:05 m; Ly=2Þ and ðLx=2þ 0:05 m; Ly=2Þ
with source strengths of �Q0 and Q0. Figure 2 compares the

reverberant sound fields obtained using the proposed method

at 191 Hz, which is the 1,1 mode defined for an enclosure

with rigid walls. A dipole radiation pattern can be clearly

identified in the left column of Fig. 2. When the wall is set

to be absorptive on x¼Lx and y¼ 0 in the middle and right

columns of Fig. 2, respectively, the reflections of waves in

the corresponding direction are mitigated significantly. The

results obtained with the commercial FEM software are not

presented for the sake of conciseness. The spatially averaged

relative error, defined as jp� pFEMj=jpj with pFEM the sound

pressure vector obtained using the FEM, is less than 0.05%

in all cases.

FIG. 2. (Color online) Sound fields at 191 Hz (1,1 mode) generated by a dipole consisting of two point sources located at ðLx=2� 0:05 m;Ly=2Þ and

ðLx=2þ 0:05 m; Ly=2Þ in a 2D rectangular enclosure, where (left) all walls are rigid; (middle) x¼Lx is covered with absorptive material; (right) y¼ 0 is cov-

ered with absorptive material.
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2. Cylindrical harmonic representation of a line
source

The second example is a line source with a length of 2a
placed on the y0 axis, which is usually used to simulate a

baffled line piston source in 2D models.39,40 It has a direc-

tional beam pattern at large ka due to the aperture effects.

The source density can be written as q0ðq0sÞ ¼ ðQ0=
2aÞPðy0s=2aÞdðx0sÞ,

46 where the denominator 2a is to ensure

that the line source has a total surface velocity of Q0, and

the rectangle function PðfÞ ¼ 1 when �1=2 < f < 1=2, and

PðfÞ ¼ 0 otherwise. The cylindrical expansion coefficients

are39,40

A2mðkÞ ¼
Q0

a

ða

0

J2mðkq0sÞdq0s; (49)

and A2mþ1ðkÞ ¼ 0, where the integral with respect to J2m can

be efficiently evaluated using the Gauss–Legendre quadra-

ture,39 hypergeometric functions,40 and Struve functions.47

The 2D spatial Fourier transform of the source density is

~q0ðk0nÞ ¼ Q0sincðkny

0aÞ: (50)

Figure 3 shows the reverberant sound fields obtained

using the proposed method and the FEM at 191 Hz (1,1

mode). The centroid of the line source is located at

qc ¼ ð0:2 m; 0:2 mÞ, and the direction angle is ud ¼ 15
. It

can be found from the left column of Fig. 3 that a clear

modal pattern is excited when all walls are rigid as the line

source is placed close to a corner of the enclosure. The

mode in the x and y directions tends to diminish when the

wall is absorptive on x¼ Lx and y¼ 0, as shown in the mid-

dle and right columns of Fig. 3, respectively. The spatially

averaged relative error against the FEM is less than 0.05%,

which validates the accuracy of the proposed method.

To show the reverberant sound field generated by a

highly directional source, the SPL at 40 kHz is given in Fig. 4

with other parameters being the same as those used in Fig. 3.

This frequency is a typical carrier frequency for the PAL, and

there is a need for accurately calculating the reverberant

sound fields at this frequency in an enclosure.46 It can be

found in the left column of Fig. 4 that highly directional

beams propagate along the radiation axis and experience

multiple reflections between walls. The truncation of the

directional beam after the incidence on the absorptive wall

can be clearly identified in the middle and right columns of

Fig. 4. In such a case, the spatially averaged relative error

against the FEM is found to be less than 0.8%, which vali-

dates the accuracy of the proposed method even at a very

high frequency.

B. Directional sources in a 3D enclosure

1. Point monopole source array

In 3D space, supposing an array consisting of Ns point

monopole sources with the ith source located at r0s;i ¼ ðr0s;i;
h0s;i;u

0
s;iÞ described under the primed coordinate system, the

FIG. 3. (Color online) Sound fields at 191 Hz (1,1 mode) generated by a line source in a 2D rectangular enclosure, where (left) all walls are rigid; (middle)

x¼Lx is covered with absorptive material; (right) y¼ 0 is covered with absorptive material. The source centroid is located at qc ¼ ð0:2 m; 0:2 mÞ, and the

radiation angle is ud ¼ 15
.

FIG. 4. (Color online) Sound fields at 40 kHz generated by a line source in a 2D rectangular enclosure, where (left) all walls are rigid; (middle) x¼Lx is cov-

ered with absorptive material; (right) y¼ 0 is covered with absorptive material. The source centroid is located at qc ¼ ð0:2 m; 0:2 mÞ, and the radiation angle

is ud ¼ 15
.
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source density can be described as q0ðr0sÞ ¼
PNs

i¼1 Qs;idðr0s
�r0s;iÞ. The spherical harmonic expansion coefficients can be

obtained by using Eqs. (7) and (10) as8

Am
‘ ðkÞ ¼

XNs

i¼1

Qs;ij‘ðkr0s;iÞY
m;�
‘ ðh

0
s;i;u

0
s;iÞ: (51)

The 3D spatial Fourier transform of the source density is

~q0ðk0nÞ ¼
XNs

i¼1

Qs;ie
�ik0n�r0s;i : (52)

In this subsection, a simple directional source that generates

a dipole outgoing sound field is considered first. The dipole

is approximated by two point monopole sources located

at ðLx=2� 0:05 m; Ly=2� 0:05 m; Lz=2� 0:05 mÞ and

ðLx=2þ 0:05 m; Ly=2þ 0:05 m; Lz=2þ 0:05 mÞ with source

strengths of �Q0 and Q0. Figure 5 presents the SPL in the

orthogonal slice planes in the x, y, and z directions with

the cross-point at the source centroid, obtained using the

proposed method at 223 Hz, which is 1,1,1 mode defined for

an enclosure with rigid walls. The spatially averaged rela-

tive error against the FEM is found to be less than 0.1%.

The figures obtained using the FEM are almost the same as

Fig. 5, so they are not presented for conciseness. Similar to

the dipole in a 2D rectangular enclosure as shown in Fig. 2,

the dipole radiation pattern as well as the effects of the

absorptive wall can be clearly observed in Fig. 5.

2. Spherical harmonic representation of a circular
source

The second example in the 3D model is a circular

source with a radius of a placed on the plane z0 ¼ 0, which

is usually used to simulate a baffled circular piston

source.43,48 It has a directional beam pattern at large ka. The

source density can be written as q0ðr0sÞ ¼ ðQ0=pa2ÞHða
�q0sÞdðz0sÞ, where the denominator pa2 is to ensure that the

source has a total volume velocity of Q0, and HðfÞ is the

Heaviside function, which is 1 when f � 0 and 0 when

f < 0. The spherical expansion coefficients are43,48

FIG. 5. (Color online) Sound fields at 223 Hz (1,1,1 mode) generated by a dipole in a 3D rectangular enclosure, where (left) all walls are rigid; (middle)

x¼Lx is covered with absorptive material; (right) y¼ 0 is covered with absorptive material. The source centroid is located at rc ¼ ðLx=2; Ly=2; Lz=2Þ, and

the coordinates of two point sources are r0s;1 ¼ ð�0:05 m; �0:05 m; �0:05 mÞ and r0s;2 ¼ ð0:05 m; 0:05 m; 0:05 mÞ. Results are obtained in the plane (top)

x ¼ xc, (middle) y ¼ yc, or (bottom) z ¼ zc.
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Am
2‘ðkÞ ¼

Q0

a2
dm;0Y0

2‘ðp=2; 0Þ
ða

0

j2‘ðkrsÞrsdrs; (53)

and Am
2‘þ1ðkÞ ¼ 0, where the integral involving j2‘ can be

efficiently evaluated using the Gauss–Legendre quadra-

ture,43 hypergeometric functions,48 and closed-form solu-

tions.49 The 3D spatial Fourier transform of the source

density is

~q0ðk0nÞ ¼ Q0jinc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02nx
þ k02ny

q
a

� �
; (54)

where the jinc function jincðxÞ � 2J1ðxÞ=x.

Figure 6 shows the reverberant sound fields obtained

using the proposed method at 223 Hz (1,1,1 mode). The cen-

troid of the circular source is located at rc ¼ ð0:2 m; 0:2 m;
0:2 mÞ, and the radiation angles are ðhd;udÞ ¼ ð90
; 15
Þ.
The modal pattern and the effects of absorptive walls in Fig.

6 are the same as those presented for a 2D enclosure as

shown in Fig. 3. The spatially averaged relative error against

the FEM is found to be less than 0.04% in this example.

Figure 7 shows the reverberant sound fields at 40 kHz with

other parameters being the same as those used in Fig. 6. As

expected, a highly directional beam is observed, and the

major energy of the beam lies in the xOy plane as shown in

the bottom row of Fig. 7. The middle and right columns

demonstrate the significant effects of absorptive walls. It is

noted that our computer is unable to perform the simulation

using the FEM for this case because the required memory is

too large, and the calculation is very time-consuming.

Therefore, the spatially averaged relative error against the

FEM is not available for this case.

C. Computation efficiency

In this subsection, the computational efficiency of the

proposed method is analyzed based on the numerical results

obtained using MATLAB 2022a on a personal computer with

an AMD RyzenTM ThreadripperTM 3960X (Santa Clara,

CA) central processing unit (CPU) with 256 GB of random

access memory (RAM). Table I compares the calculation

time to obtain the reverberant sound fields using the direct

modal summation, the modal summation with FFT, and the

FEM. The calculation time is measured for evaluating the

sound pressure at all grid points in the enclosure. The grid

FIG. 6. (Color online) Sound fields at 223 Hz (1,1,1 mode) generated by a circular source in a 3D rectangular enclosure, where (left) all walls are rigid; (mid-

dle) x¼Lx is covered with absorptive material; (right) y¼ 0 is covered with absorptive material. The source centroid is located at rc ¼ ð0:2 m; 0:2 m;
0:2 mÞ, and the radiation angles are ðhd;udÞ ¼ ð90
; 15
Þ. Results are obtained in the plane (top) x ¼ xc, (middle) y ¼ yc, or (bottom) z ¼ zc.
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points in x, y, and z directions are 35, 30, and 35, respec-

tively, at 191 and 223 Hz. At 40 kHz, the grid points in x, y,

and z directions are 350, 300, and 350, respectively. It is

noted that the exact calculation time is not presented for the

FEM at 40 kHz in the 3D enclosure because the calculation

is very time-consuming. Our simulations showed that the

elapsed time for this case is at least more than 2 h (7200 s).

It can be found that the FEM can obtain converged results

with an acceptable calculation time at low frequencies, but

it becomes very time-consuming at high frequencies. The

MEM consistently exhibits superior computational effi-

ciency in all cases, and its performance can be further

enhanced through the utilization of the FFT. When all walls

are rigid, the proposed modal summation with FFT method

can be more than 100 times faster than the FEM. The

improvement of the computation efficiency of the proposed

method deteriorates when one wall is absorptive because the

FFT cannot be used in the direction perpendicular to this

wall as discussed in Sec. III D. However, the proposed

method is still much more efficient than the FEM and, thus,

provides an alternative to simulating reverberant sound

fields even in a large room and/or at high frequencies.

VI. CONCLUSIONS

This paper developed a wave-based simulation method

for calculating the non-diffuse reverberant sound field gen-

erated by a directional source in both 2D and 3D rectangular

enclosures using the modal expansions. This work may find

its application in investigating the reverberation effects of

directional sources on sound field reproductions, active

FIG. 7. (Color online) Sound fields at 40 kHz generated by a circular source in a 3D rectangular enclosure, where (left) all walls are rigid; (middle) x¼Lx is

covered with absorptive material; (right) y¼ 0 is covered with absorptive material. The source centroid is located at qc ¼ ð0:2 m; 0:2 mÞ, and the radiation

angle is ud ¼ 15
. Results are obtained in the plane (top) x ¼ xc, (middle) y ¼ yc, or (bottom) z ¼ zc.

TABLE I. Calculation time of the MEM and the FEM.

Frequency

Modal

summation

using FFT (s)

Direct modal

summation (s) FEM (s)

2D enclosure with

rigid walls

191 Hz 0.05 0.81 2

40 kHz 0.07 1.38 244

2D enclosure with

one absorptive wall

191 Hz 0.25 1.02 3

40 kHz 0.36 2.21 271

3D enclosure with

rigid walls

223 Hz 0.13 13.22 22

40 kHz 81 3302 >7200

3D enclosure with

one absorptive wall

223 Hz 0.75 15.1 34

40 kHz 243 3811 >7200

214 J. Acoust. Soc. Am. 154 (1), July 2023 Zhong et al.

https://doi.org/10.1121/10.0020070

 12 July 2023 16:51:10

https://doi.org/10.1121/10.0020070


noise control systems, and so on. The idea of the proposed

method is to express the modal source density using the

cylindrical or spherical harmonic expansion coefficients of

the directional source. The numerical results with several

typical directional sources are presented, and the accuracy is

validated by the comparison against those obtained using

the FEM. To improve the computation efficiency, the sum-

mation of enclosure modes was written in the form of dis-

crete Fourier transform so that the FFT can be used for

lightly damped or rigid walls. This makes it possible to

obtain accurate reverberant sound fields at a high frequency

even up to 40 kHz with a relatively low computational load.

It is noted that the computation of the modal summation via

FFT is more efficient if the responses at a large number of

receivers are required. This technique is, therefore, useful

for the field visualization and walk-through auralization. In

some applications in room acoustics, other physical fields,

including the particle velocity and the sound intensity, are

also required, and their calculations using the proposed

method are a straightforward extension of the presented

approach. The sources are increasingly measured via cylin-

drical or spherical harmonics.17 In future work, we aim to

validate the measured cylindrical and spherical harmonics

for specific sources through experimental verification.
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